The Current State of Mass Timber and the Future of Tall Wood

Melissa Kroskey
WoodWorks
Washington, D.C.

Abstract
Due to their high strength, dimensional stability and positive environmental performance, mass timber building products are quickly becoming materials of choice for sustainability-minded developers and designers. This presentation will provide an overview of the variety of products available, including glue-laminated timber (glulam), cross-laminated timber (CLT), nail-laminated timber (NLT), dowel-laminated timber (DLT), mass plywood panels (MPP), heavy timber decking, and other engineered and composite systems. Applications for the use of these products under modern building codes will be discussed, and examples of their use in U.S. projects reviewed. The recent building code changes allowing for taller wood buildings will be discussed along with forecasts on the future of tall wood.

Update for Ongoing Termite Study on Cross-Laminated Timber (CLT) Panels

Tamara S.F.A. França
C. Elizabeth Stokes
Mississippi State University
Starkville, MS

Juliet D. Tang
USDA Forest Service Forest Products Laboratory
Starkville, MS

Abstract
The newest mass timber trend in the North American market is cross laminated timber (CLT), and manufacturers are showing a strong desire to expand this product throughout the U.S. CLT products are made of several layers of lumber, pressed and glued in alternating directions. This product can be used for construction of structural walls, floors and roofs. The major advantages of CLT panels are that the product requires less labor and time to install, and has a low environmental impact because of its high capacity for carbon sequestration. Many studies have been conducted to characterize the mechanical performance of CLT; however, the resistance of CLT products against termite attack is still unknown. Repair costs in termite-damaged homes average thousands of dollars per building and may cause billions of dollars in damage to homes per year in the U.S. alone. The objective of this study is to describe updates on an ongoing project designed to evaluate CLT resistance against subterranean termites in the southeastern U.S. The AWPA E1 standard was used as base for this study, and the results provide major modifications that are needed in order to more accurately evaluate the resistance of CLT against termite attack, which must be well defined should CLT continue to expand in use.